References

Figgis, B. N. \& Reynolds, P. A. (1984). Inorg. Chem. Submitted for publication.
Iwata, M. (1977). Acta Cryst. B33, 59-69.
Jepson, C. A. \& House, J. E. (1981). J. Inorg. Nucl. Chem. 43, 953-956.

Koester, L. (1977). Neutron Physics, Vol. 80, p. 1. Berlin: Springer.
Schultz, A. J., Srinivasan, K., Teller, R. G., Williams, J. M. \& Lukehart, C. M. (1984). J. Am. Chem. Soc. 106, 999-1003.
Schultz, A. J., Teller, R. G., Williams, J. M., Strauss, M. G. \& Brenner, R. (1982). Trans. Am. Crystallogr. Assoc. 18, 169-179.

Acta Cryst. (1985). C41, 636-638

Lanthanum Thallium Bis(sulphate) Dihydrate, $\mathbf{T l L a}\left(\mathbf{S O}_{\mathbf{4}}\right)_{\mathbf{2}} \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$

By Venčeslav Kaučič, Nataša Bukovec and Ljobo Golič
Department of Chemistry, Edvard Kardelj University, Murnikova 6, 61000 Ljubljana, Yugoslavia

(Received 30 October 1984; accepted 20 December 1984)

Abstract

M_{r}=571.44\), monoclinic, $P 2_{1} / n, \quad a=$ 7.216 (1),$\quad b=11.853$ (1),$\quad c=10.486$ (1) $\AA, \quad \beta=$ $92.05(1)^{\circ}, V=896.31 \AA^{3}, Z=4, D_{x}=4.233 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=233.5 \mathrm{~cm}^{-1}, \quad F(000)=$ 1016, $T=293 \mathrm{~K}$, final $R=0.035$ for 1791 observed reflections. The La and Tl atoms are nine-coordinated by O atoms, La atoms in the form of a distorted monocapped square antiprism [La-O distances 2.404 (7)-2.637 (6) \AA] and Tl atoms in the form of an irregular polyhedron [T1-O distances 2.740 (6)3.465 (8) \AA]. The sulphate groups join La and Tl polyhedra into a three-dimensional framework.

Introduction. The crystal structure of the title compound was determined as a continuation of our research programme concerning double salts of the rare earths of the general formula $M^{1} \mathrm{Ln}^{\mathrm{IH}}\left(\mathrm{SO}_{4}\right)_{2} . x \mathrm{H}_{2} \mathrm{O}$ (Bukovec \& Golič, 1975; Bukovec, Bukovec, Golič \& Šiftar, 1977; Bukovec, Golič, Bukovec \& Šiftar, 1978; Bukovec, Kaučič \& Golič, 1980).

Experimental. Single crystals prepared by isothermal evaporation of aqueous solutions containing equivalent quantities of thallium and lanthanum sulphate.
D_{m} not determined. Single crystal ca $0.06 \times 0.08 \times$ 0.34 mm . Nonius CAD-4 diffractometer, graphitemonochromated Mo $K \alpha$ radiation. Unit-cell parameters by least-squares refinement of setting angles of 60 centred reflections with $2 \theta>20^{\circ}$. Intensities of reflections ($h: 0 \rightarrow 10 ; k: 0 \rightarrow 16 ; l:-14 \rightarrow 14$) with $0.03<$ $\sin \theta / \lambda<0.70 \AA^{-1}$ measured at room temperature. $\omega-2 \theta$ scan mode, scan angle $\Delta \omega=(0.60+$ $0.20 \tan \theta)^{\circ}$. Three reflections ($\overline{3} \overline{2}, 314,114$) monitored after every 240 intensities measured; no significant variation in intensity. Of 2583 independent reflections measured, 1791 with $I_{o}>3 \sigma\left(I_{o}\right)$ considered as observed, 792 unobserved. Empirical absorption corrections applied (transmission factors from 0.163 to
0.301). Structure solved with direct methods, using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) to locate La and Tl atoms. Subsequent Fourier map revealed positions of the other non-H atoms. Refinement by full-matrix least squares on F of positional and anisotropic thermal parameters of all non- H atoms and an isotropic-extinction parameter (final value 0.53×10^{-3}) converged to final $R=0.035$ and $\quad w R=0.036 . \quad(\Delta / \sigma)_{\text {max }}=0.2 . \quad 128$ parameters. Weighting function $w=W_{F} W_{S}$ determined empirically from $W_{F}\left(\left|F_{o}\right|<60\right)=\left(\left|F_{o}\right| / 60\right)^{2}$, $W_{F}\left(\left|F_{o}\right|>110\right)=\left(110 /\left|F_{o}\right|\right)^{2}, \quad$ and $\quad W_{F}\left(60<\left|F_{o}\right|<\right.$ $110)=1.0, \quad$ and $\quad W_{s}(\sin \theta<0.30)=(\sin \theta / 0.30)^{2}$, $W_{s}(\sin \theta>0.38)=(0.38 / \sin \theta)^{2}$, and $W_{s}(0.30<\sin \theta<$ $0.38)=1.0$.

Final difference Fourier map shows max. height of $1.08 \mathrm{e} \AA^{-3}$ close to La atom. We could locate two of the four H atoms in the map: $0.44 \mathrm{e} \AA^{-3}$ high maximum $1.06 \AA$ from the water atom $O(10)$ and $0.39 \mathrm{e} \AA^{-3}$ high maximum $0.76 \AA$ from the water atom $O(9)$. These atoms were not included in the refinement.

All calculations, except direct methods, carried out using XRAY72 (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972). Atomic scattering factors for non-H atoms from Cromer \& Mann (1968), for H atoms from Stewart, Davidson \& Simpson (1965). Anomalous-dispersion-correction factors for non-H atoms from Cromer \& Liberman (1970).

Discussion. The final atomic coordinates, bond lengths and bond angles are given in Tables 1 and 2.* The atom-numbering scheme is shown in Fig. 1.

[^0](c) 1985 International Union of Crystallography

Table 1. Final atomic coordinates ($\times 10^{5}$ for Tl, La and $\mathrm{S} ; \times 10^{4}$ for O$)$ and $U_{\text {eq }}\left(\AA^{2} \times 10^{3}\right)($ Hamilton, 1959) with e.s.d.'s in parentheses

	x	y	z	U_{eq}
Tl	$23886(5)$	$14282(4)$	$33725(4)$	$30 \cdot 7(2)$
La	$74781(6)$	$40371(4)$	$30573(4)$	$12 \cdot 9(2)$
$\mathrm{S}(1)$	$25119(25)$	$44983(18)$	$43646(17)$	$13 \cdot 9(9)$
$\mathrm{S}(2)$	$75253(24)$	$9474(18)$	$40775(16)$	$13 \cdot 6(8)$
$\mathrm{O}(1)$	$4167(8)$	$4131(7)$	$3713(6)$	$26(3)$
$\mathrm{O}(2)$	$860(8)$	$4031(6)$	$3694(6)$	$23(3)$
$\mathrm{O}(3)$	$2604(9)$	$4083(6)$	$5697(6)$	$21(3)$
$\mathrm{O}(4)$	$2415(10)$	$5743(6)$	$4438(6)$	$26(3)$
$\mathrm{O}(5)$	$7915(11)$	$2135(5)$	$3804(7)$	$29(3)$
$\mathrm{O}(6)$	$9082(8)$	$247(6)$	$3655(6)$	$21(3)$
$\mathrm{O}(7)$	$7279(10)$	$829(6)$	$5439(6)$	$27(3)$
$\mathrm{O}(8)$	$5898(8)$	$550(6)$	$3315(6)$	$21(3)$
$\mathrm{O}(9)$	$5248(10)$	$2789(6)$	$1632(6)$	$28(3)$
$\mathrm{O}(10)$	$9217(10)$	$3059(8)$	$1260(8)$	$39(4)$

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

(a) SO_{4} groups			
$\mathrm{S}(1)-\mathrm{O}(1)$	1.463 (6)	$\mathrm{S}(2)-\mathrm{O}(5)$	1.466 (7)
$\mathrm{S}(1)-\mathrm{O}(2)$	1.470 (6)	$\mathrm{S}(2)-\mathrm{O}(6)$	1.477 (7)
$\mathrm{S}(1)-\mathrm{O}(3)$	1.481 (6)	$\mathrm{S}(2)-\mathrm{O}(\mathrm{7})$	1.452 (6)
$\mathrm{S}(1)-\mathrm{O}(4)$	1.479 (7)	$\mathrm{S}(2) \mathrm{O}(8)$	1.474 (6)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	109.0 (4)	$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{O}(6)$	109.1 (4)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	109.4 (4)	$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{O}(7)$	108.4 (4)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(4)$	111.2 (4)	$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{O}(8)$	110.8 (4)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	109.5 (4)	$\mathrm{O}(6)-\mathrm{S}(2)-\mathrm{O}(7)$	111.2 (4)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(4)$	111.2 (4)	$\mathrm{O}(6)-\mathrm{S}(2)-\mathrm{O}(8)$	104.9 (4)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{O}(4)$	106.4 (4)	$\mathrm{O}(7)-\mathrm{S}(2)-\mathrm{O}(8)$	112.3 (4)
(b) La and Tl polyhedra			
$\mathrm{La}-\mathrm{O}(1)$	2.512 (6)	T1-O(1)	3.465 (8)
La-O(5)	2.404 (7)	Tl-O(2)	3.297 (7)
La-O(9)	2.615 (7)	Tl-O(8)	2.740 (6)
$\mathrm{La}-\mathrm{O}(10)$	2.577 (8)	Tl-O(9)	3.234 (7)
$\mathrm{La}-\mathrm{O}\left(2^{\prime}\right)$	2.507 (6)	T1-O(519)	3.381 (8)
La-O(3')	2.585 (7)	$\mathrm{Tl}-\mathrm{O}\left(6^{\text {liv }}\right.$)	2.792 (6)
La-O(4')	2.637 (6)	T1-O(7v)	2.957 (7)
La-O(6II)	2.531 (6)	$\mathrm{Tl}-\mathrm{O}\left(10^{\text {¹ }}\right.$)	3.316 (8)
$\mathrm{La}-\mathrm{O}$ (817)	2.605 (7)	$\mathrm{Tl}-\mathrm{O}\left(4^{\text {II }}\right.$)	3.066 (6)
(c) Hydrogen-bond contacts			
O (9) $\cdots \mathrm{O}$ (3vili	2.982 (10) A	$\mathrm{O}(10) \ldots \mathrm{O} 3^{\text {viIII }}$)	2.846 (11) A
$\mathrm{O}(9) \ldots \mathrm{O}$ ($7^{\text {¹) }}$)	2.940 (10)	$\mathrm{O}(10) \cdots \mathrm{O}\left(7^{\text {vili }}\right.$)	2.738 (11)
Symmetry code: (i) $1+x, y, z$; (ii) $1-x, 1-y, 1-z$; (iii) $\frac{3}{2}-x$,			
$\begin{aligned} & \frac{1}{2}+y, \frac{1}{2}-z \text {; (iv) }-1+x, y, z ; \text { (v) } 1-x,-y, 1-z \text {; (vi) }-\frac{1}{2}+x, x, \\ & \frac{1}{2}-y, \frac{1}{2}+z \text {; (vii) } \frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z \text {; (viii) } \frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z ; \text { (ix) } \end{aligned}$			
$-\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$.			

(a) SO_{4} groups
(c) Hydrogen-bond contacts

Symmetry code: (i) $1+x, y, z$; (ii) $1-x, 1-y, 1-z$; (iii) $\frac{3}{2}-x$, $\frac{1}{2}+y, \frac{1}{2}-z$; (iv) $-1+x, y, z$; (v) $1-x,-y, 1-z$; (vi) $-\frac{1}{2}+x$, $\frac{1}{2}-y, \frac{1}{2}+z$; (vii) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (viii) $\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$; (ix) $-\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$.

The dimensions of the sulphate groups are consistent with the values observed in other sulphate structures. There are only small variations in the $\mathrm{S}-\mathrm{O}$ bond lengths. The average $\mathrm{S}-\mathrm{O}$ distances for the two crystallographically nonequivalent SO_{4} groups are 1.473 and $1.467 \AA$; the average $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle is 109.5° for both groups. Smaller angles $\mathrm{O}(3)-\mathrm{S}(1)-$ $\mathrm{O}(4)$ and $\mathrm{O}(6)-\mathrm{S}(2)-\mathrm{O}(8)$ result from the bonding of the O atoms to the same La atom. Each $\mathrm{S}(1)$ sulphate group is bonded to three different La atoms, monodentate through $\mathrm{O}(1)$ and $\mathrm{O}(2)$ and bidentate through $\mathrm{O}(3)$ and $O(4)$, while each $S(2)$ sulphate group is bonded to two different La atoms, monodentate through $\mathrm{O}(5)$ and
bidentate through $O(6)$ and $O(8) ; O(7)$ is not coordinated to the La atoms.
The La atom is coordinated to nine O atoms, seven of these are sulphate O atoms and two are water O atoms. In the coordination sphere the nine La-O distances vary between 2.404 (7) and 2.637 (6) \AA and the coordination polyhedron can be described as a distorted monocapped square antiprism (Fig. 2).

The Tl atom is also nine-coordinated with O atoms in the form of an irregular polyhedron. $\mathrm{Tl}-\mathrm{O}$ distances are in the range 2.740 (6) to 3.465 (8) \AA. The sulphate groups join La and Tl polyhedra into a threedimensional framework (Fig. 1).

The two water molecules are coordinated to La and Tl atoms and they also form weak hydrogen bonds to O (3) and $O(7)$ of the sulphate groups (Table 2). Around each of the water atoms $\mathrm{O}(9)$ and $\mathrm{O}(10)$ there are $\mathrm{La}, \mathrm{Tl}, \mathrm{O}(3)$ and $\mathrm{O}(7)$ atoms in the form of a distorted tetrahedron.

Financial support by the Research Council of Slovenia is gratefully acknowledged.

Fig. 1. A view of the unit cell with the atom-numbering scheme.

Fig. 2. The coordination polyhedron of La.

References

Bukovec, N., Bukovec, P., Golič, L. \& Siftar, J. (1977). Monatsh. Chem. 108, 997-1003.
Bukovec, N., Golič, L., Bukovec, P. \& Siftar, J. (1978). Monatsh. Chem. 109, 1305-1310.
Bukovec, N., Kauc̆ıc̆, V. \& Golič, L. (1980). Acta Cryst. B36, 129-130.
Bukovec, P. \& Golič, L. (1975). Vestn. Slov. Kem. Druš. 22, 19-25.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Main, P., Hull, S. E., Lessinger, L., Germain, G., DeclercQ, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. W. \& Hall, S. R. (1972). The $X R A Y 72$ system-version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1985). C41, 638-641

Location and Anisotropic Refinement of Hydrogen Atoms in Disodium Dihydrogensilicate Tetrahydrate, $\mathrm{Na}_{\mathbf{2}} \mathbf{H}_{\mathbf{2}} \mathrm{SiO}_{\mathbf{4}} \cdot \mathbf{4} \mathrm{H}_{\mathbf{2}} \mathrm{O}$, by Neutron Diffraction; Hydrogen Bonding at 173 K

By Rudolf L. Schmid and J. Felsche
Fakultät für Chemie, Universität Konstanz, D-7750 Konstanz, Postfach 5560, Federal Republic of Germany

and G. J. McIntyre
Institut Laue - Langevin, BP 156X, 38042 Grenoble CEDEX, France
(Received 29 June 1984; accepted 30 November 1984)

Abstract

M_{r}=212.14\), triclinic, $P \overline{1}, a=7.916$ (2), $b=9.558$ (2), $\quad c=6.643$ (1) $\AA, \quad \alpha=70.13$ (2), $\quad \beta=$ 104.83 (2), $\gamma=122.56(2)^{\circ}, \quad V=396.71 \AA^{3}, \quad Z=2$, $D_{m}=1.74, D_{x}=1.776 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda=0.7017 \AA, \mu(n)$ $=0.204 \mathrm{~mm}^{-1}, F(000)=4.09, T=173 \mathrm{~K}, R=0.028$ for 1498 independent reflections. Anisotropic structure refinement including absorption and secondaryextinction correction. The crystal structure of $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ consists of linear chains of hydrogenbonded $\left[\mathrm{H}_{2} \mathrm{SiO}_{4}\right]^{2-}$ tetrahedra running along [110] and columns of edge-linked $\mathrm{Na}-\mathrm{O}$ polyhedra running parallel to the c axis. The $\left[\mathrm{H}_{2} \mathrm{SiO}_{4}\right]^{2-}$ tetrahedron shows the smallest $\mathrm{HO}-\mathrm{Si}-\mathrm{OH}$ angle observed in the series of $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}(n=8,7,5,4)$ hydrates which is due to the arrangement of the hydroxyl H atoms. All Na atoms have coordination number (CN) 5 with short $\mathrm{Na}-\mathrm{O}$ bonds [mean $\mathrm{Na}-\mathrm{O}=2.37$ (2) \AA]. $\mathrm{CN}=4$ with tetrahedral geometry is observed for the coordination polyhedra of the O atoms of all hydrate water molecules.

Introduction. Two series of crystalline hydrate phases exist in the alkali-rich section of the system $\mathrm{Na}_{2} \mathrm{O}-$ $\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}: \mathrm{Na}_{3} \mathrm{HSiO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O} \quad(n=5,2,1,0)$ with an $\mathrm{Na}_{2} \mathrm{O}: \mathrm{SiO}_{2}$ ratio of 3:2; and $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4}, n \mathrm{H}_{2} \mathrm{O} \quad(n=8$, $7,5,4)$ with an $\mathrm{Na}_{2} \mathrm{O}: \mathrm{SiO}_{2}$ ratio of $1: 1$. Members of the first series are built up of isolated $\left[\mathrm{HSiO}_{4}\right]^{3-}$ anions, as shown by the X-ray single-crystal structure analyses for $\mathrm{Na}_{3} \mathrm{HSiO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ (Smolin, Shepelev \& Butikova, 1973)

0108-2701/85/050638-04\$01.50
and $\mathrm{Na}_{3} \mathrm{HSiO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Schmid, Huttner \& Felsche, 1979; Schmid, Szolnay, Felsche \& Huttner, 1981). The members of the second series are built up of isolated $\left[\mathrm{H}_{2} \mathrm{SiO}_{4}\right]^{2-}$ anions as has been shown by X-ray and neutron single-crystal structure analyses: $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4}$.- $^{-}$ $8 \mathrm{H}_{2} \mathrm{O}$ [Jamieson \& Dent-Glasser, 1966a,b (X-ray); Schmid, Felsche \& McIntyre, 1984 (neutron)], $\mathrm{Na}_{2} \mathrm{H}_{2}{ }^{-}$ $\mathrm{SiO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ [Dent-Glasser \& Jamieson, 1976 (X-ray)], $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ [Jamieson \& Dent-Glasser, 1967 (X-ray); Williams \& Dent-Glasser, 1971 (neutron)] and $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ [Jost \& Hilmer, 1966 (X-ray)].
$\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ shows the most pronounced thermal stability within the $1: 1$ series of sodium silicate hydrates which all melt congruently at temperatures between 313 and 343 K (Felsche, Ketterer \& Schmid, 1984). A distinct tendency to form supercooled melts has been observed for all four hydrate phases existing within this series. Glass-points at temperatures between 223 and 273 K have been observed by means of differential scanning calorimetry (Felsche, Ketterer \& Schmid, 1984). In order to provide a better understanding of these thermal properties which are unique in oxosalt-hydrate crystal chemistry we will elaborate correlations with hydrogen bonding in the structures of all four hydrate phases based on neutron diffraction.
In this paper we will report on a single-crystal neutron diffraction study of $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ at 173 K . The results of a 296 K experiment will be published separately.
© 1985 International Union of Crystallography

[^0]: * Lists of anisotropic thermal parameters and observed and calculated structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39990 (13 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

